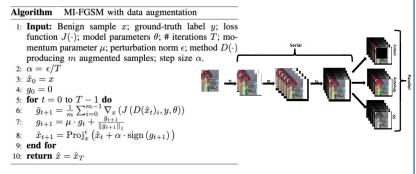
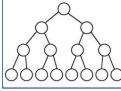

The Ultimate Combo: Boosting Adversarial Example **Transferability by Composing Data Augmentations**

Zebin Yun (TAU), Achi-Or Weingarten (Weizmann), Eyal Ronen (TAU), Mahmood Sharif (TAU)

מכון ויצמו למדע


Adversarial examples (AEs) often transfer between models; augmentations boost transfer (e.g., [1])

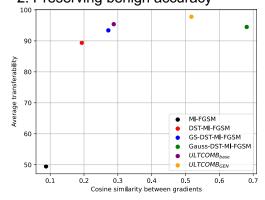

Prior attack only explore limited number of augmentations. Can we do better by combining more augmentations?

New Composition Method

We propose parallel composition to integrate many augmentations into attacks

Finding the Ultimate Combo

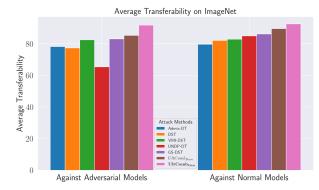
Grid search on a limited search space (2^7 choices) to find the ULTCOMB_{base}



Genetic search on the full search space (248 choices) to find the ULTCOMB_{gen}

Results

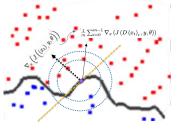
But why some augmentations can help improve transferability whereas others can't? 1. Increasing gradient similarity


2. Preserving benign accuracy

For qualified augmentations, we find monotonicity: more augmentations \rightarrow high transferability

Ultimate Combo's AEs transfer better than other attacks!

Against normally and adversarially trained targets:


From an ensemble of normally trained surrogates to defended ImageNet models:

Defense	Admix-DT	DST	VMI-DST	UNDP-DT	UltComb _{Base}	UltComb _{Gen}
Bit-Red	88.6	88.2	94.8	94.9	96.0	95.5
NRP	51.0	54.9	80.0	27.9	65.3	55.8
RS	87.3	84.8	90.6	85.5	88.5	95.6
ARS	65.4	62.9	66.5	61.9	67.0	71.9

[1] Xie, Cihang, et al. "Improving transferability of adversarial examples with input diversity." CVPR. 2019.

Theoretical Analysis

Some augmentations smoothen the model gradients (proven with techniques from randomized smoothing)

We expect this reduces the effect of surrogate models' peculiarities on adversarial examples \rightarrow better generalization to unseen models