The Ultimate Combo: Boosting Adversarial Example
Transferability by Composing Data Augmentations
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Adversarial examples (AEs) often transfer
between models; augmentations boost
transfer (e.g., [1])

Black-Box Access

i Inputs

Compute Adversarial :
Examples !

Prior attack only explore limited number of
augmentations. Can we do better by
combining more augmentations?

Target Model

Outputs
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New Composition Method
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We propose parallel composition to integrate many
augmentations into attacks

Algorithm MI-FGSM with data augmentation

: Input: Benign sample z; ground-truth label y; loss
function J(-); model parameters 6; # iterations 7"; mo-
mentum parameter ; perturbation norm ¢; method D(

producing m augmented samples; step size .
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: end for

: return Z = &
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Finding the Ultimate Combo

Grid search on a limited
search space (27 choices) to
find the ULTCOMB), 4,

Genetic search on the full search
space (2*8 choices) to find the
ULTCOMBj e,

But why some augmentations can help improve
transferability whereas others can’t?
1. Increasing gradient similarity

2. Preserving benign accuracy
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Theoretical Analysis

Some augmentations smoothen the model gradients
(proven with techniques from randomized smoothing)

We expect this reduces the effect of surrogate
models’ peculiarities on adversarial examples

— better generalization to unseen models

For qualified augmentations, we find monotonicity:
more augmentations — high transferability

Ultimate Combo’s AEs transfer better than other attacks!

Against normally and adversarially trained targets:
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Against Normal Models

Against Adversarial Models

From an ensemble of normally trained surrogates to
defended ImageNet models:

Defense | Admix-DT

DST VMI-DST UNDP-DT | ULTCOMBRB,sg ULTCOMBGEN

Bit-Red 88.6  88.2 94.8 94.9 96.0
NRP 51.0 549 80.0 27.9 65.3
RS 87.3 848 90.6 85.5 88.5
ARS 654 629 66.5 61.9 67.0
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[1] Xie, Cihang, et al. "Improving transferability of adversarial examples with
input diversity." CVPR. 2019.




